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Metal atoms adsorbed on few-layer graphenes condense to form nanometer-size droplets whose growth is
size limited by a competition between the surface tension and repulsive electrostatic interactions from charge
transfer between the metal droplet and the graphene. For situations where the work-function mismatch is large
and the droplet surface tension is small, a growing droplet can be unstable to a family of shape instabilities. We
observe this phenomenon for Yb deposited and annealed on few-layer graphenes and develop a theoretical
model to describe it by studying the renormalization of the line tension of a two-dimensional droplet by
repulsive interparticle interactions. Our model describes the onset of shape instabilities for nanoparticles where
the growth is size limited by a generic repulsive potential and provides a good account of the experimentally
observed structures for Yb on graphene.
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I. INTRODUCTION

Graphite is widely used as a substrate for the synthesis of
free-standing metal nanoparticles due to its low chemical re-
activity, small diffusion barriers for adsorbed species and
high degree of structural order. Recent work suggests that
graphene can promote the self-assembly adsorbed-metal at-
oms into nanoscale clusters with controllable size
distributions1,2 potentially opening a new route to nanopar-
ticle synthesis. This mode of nanoparticle growth is attrac-
tive since being grown in situ the particles can be clean and
densely packed without aggregating. The species that are
produced may be useful for applications in electronics, op-
tics, information storage, nanofluidics, and catalysis. For ex-
ample, graphenes grown on Ir�111� often exhibit moiré pat-
terns �resulting from the slight lateral lattice mismatch�
which can template the growth of adsorbed-metal species.1

Microscopic calculations suggest that this occurs due to the
differential reactivity of metal species with specific sites of
the graphene lattice that are in or out of registry with the Ir
support.3,4 These developments highlight the need for under-
standing better the mechanisms that control the kinetics and
phase behavior of adsorbed species on graphenes.

It is becoming increasingly appreciated that the thickness
of a few-layer graphene is an important control parameter for
the surface energetics and phase behavior of adsorbed spe-
cies. In our earlier work2 we observed that when Au atoms
are deposited on few-layer graphenes containing m layers
where 1�m�20, the mode of adatom condensation and
nanoparticle growth differs sharply from that observed on
thick graphite. On few-layer graphenes Au condenses to
form size-limited isotropic droplets as shown in Fig. 1 where
the diameter is controlled by the layer count m of the
graphene substrate, increasing approximately as m1/3. This
phenomenon is well described by a model in which electro-
static dipole-dipole repulsion within a condensed-island pre-
vents the continued growth of large droplets. This unusual
thickness dependence arises from a short-range cutoff of this
repulsive potential which occurs on the scale of the dipole.

For few-layer graphenes, which screen poorly when the
charge exchange is small, this scale is effectively the thick-
ness of the graphene film.

In this paper we examine the effects of general repulsive
interactions on shape selection for a condensed two-
dimensional system. This work analyzes experiments similar
to those of Luo et al.2 where Yb is adsorbed on few-layer
graphene films. As shown in Fig. 2 these are observed to
condense in filamentary labyrinthine structures rather than in
isotropic size-limited droplets, suggesting new physics in the
surface energetics. Indeed, Yb is distinguished by a signifi-
cantly larger work-function mismatch to the graphene and a
lower intrinsic surface tension. These two features combine
to produce a mode-dependent renormalization of the line ten-
sion of a growing isotropic droplet. A shape instability oc-
curs when the line tension for a particular surface mode of

FIG. 1. SEM image of Au islands formed after annealing on
four layer graphene. The Au atoms condense to form size-limited
nearly isotropic droplets whose radius is limited by the repulsion
between perpendicular dipoles at the Au graphene interface. The
average droplet radius is determined by the microscopic width of
the dipole layer, effectively the width of the few-layer graphene
substrate.
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the droplet, constrained to have a constant total area, goes to
zero. We develop a formulation describing this shape insta-
bility driven by a general repulsive potential. For application
to Yb/graphene, where this repulsive potential repulsion is
provided by electrostatic dipolar interactions and can be cal-
culated from the work-function mismatch, we observe a sign
reversal of the mode-dependent surface tension for an isotro-
pic droplet as a function of its radius. This model correctly
accounts for the observed widths of the labyrinthine struc-
tures and the occasional appearance of threefold and fourfold
vertices in the condensed-filamentary patterns. These results
provide striking evidence for the essential role of electro-
static interactions in the selection of the shapes as well as
sizes of these adsorbed species.

Shape instabilities produced by electrostatic and magne-
tostatic dipolar interactions often arise in condensed-matter
problems. For example, in two dimensions they are associ-
ated with the shapes of amphiphile domains at the air water
interface5 �electrostatic� and of ferrofluid droplets6 �magne-
tostatic�. Langer et al.7 examined this problem theoretically,
exploiting the dipolar form of the repulsive interaction. They
derived an explicit formula for the line energy of a two-
dimensional droplet in terms of a double line integral over its
perimeter, a result that, in principle, can be used as input to

an algorithm to compute the shape of a growing droplet. This
approach was subsequently refined by Iwamoto et al.8,9 who
replace the double line integral by an expression for the line
energy parameterized by the amplitudes of its modes of de-
formation, and they applied this method to study effects of
dipolar interactions both for the perpendicular geometry and
for dipoles tilted with a nonzero component parallel to the
tangent plane of the droplet. Our work is similar in spirit to
that of Iwamoto et al.,8 though we present it here in a form
that is applicable to a general repulsive potential. For the
electrostatic dipolar repulsive potential appropriate to the Yb/
graphene problem the model provides a good account of the
experimental observations. Furthermore this formulation em-
phasizes that shape instabilities of this type are a generic
property of condensed phases of species with repulsive tails
in their interaction potentials. Our method can be used to
access this physics for a droplet with a general two-point
interaction potential in its interior.

Section II of this paper provides more information about
our sample preparation, characterization, and imaging of
Yb and Au nanoparticles formed on few-layer graphenes.
Section III briefly reviews the isotropic model introduced in
our earlier paper2 appropriate to size-limited circular droplets
for Au on graphene. Section IV presents some useful formu-
las for weakly perturbed circular droplets. Section V con-
structs a model for the droplet energetics including the inter-
action renormalized line tension. Section VI applied the
model to Yb and Au droplets on few-layer graphene and
provides comparison of the model with the experimental
data. A brief discussion of the results is given in Sec. VII.
Some technical details of the calculations are collected in
Appendices A and B.

II. EXPERIMENTAL

We prepared graphene flakes by mechanical exfoliation of
kish graphite onto 300 nm silicon oxide on silicon wafers.
We then cleaned the sample by annealing at 400 C in a
reducing atmosphere, 1:1 H2 and Ar. Individual flakes were
identified by color contrast in an optical microscope. Flake
thickness was determined by Veeco Dimension 3100 atomic
force microscopy in tapping mode.

We then thermally evaporated thin layers of metal onto
the surfaces. The deposition thickness was determined by a
crystal thickness monitor. We deposited 0.22�0.1 nm and
0.5�0.1 nm of Yb on different chips. For Au samples, the
thickness was 0.3�0.1 nm. Each sample was annealed to
equilibrium at 600 C �Yb� or 400 C �Au� for three hours in a
reducing atmosphere, 1:1 H2 and Ar.

We then imaged the samples in an FEI DB 235 high-
resolution scanning electron microscopy �SEM�/focused ion
beam in high-resolution scanning electron microscopy mode.
Even short exposures to the beam have been found to con-
taminate the imaged region and reduce quality so we were
especially careful that each image was taken in a previously
unimaged area.

Figures 1 and 2 show Au and Yb nanoparticles on single-
layer and few-layer graphenes. The Au particles, as noted in
�1�, are nearly isotropic. The average radius of these nano-

FIG. 2. SEM image of Yb nanoparticles formed after annealing
on graphene. The metal atoms condense to form anisotropic fibrillar
structures. The top panel is for an average coverage of 0.12 nm and
the bottom is for an average coverage of 0.5 nm.
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particles increases with the thickness of the few-layer
graphene substrate. By contrast Yb forms branching strands.
The sample with less Yb has strands that are more regular in
width. Figure 3 shows histograms of the distribution of Yb
strand widths extracted from the images of Fig. 2. The data
at higher coverage were obtained over a wider image than
shown in the lower panel of Fig. 2. We excluded only places
where the Yb was clearly branching. The mean of the distri-
bution for 0.22 nm average coverage is 4.01�0.08 nm, and
at a 0.5 nm coverage it increases to is 4.95�0.11 nm. The
peaks of the two distributions overlap; the increase arises
from the irregularities which are more marked on the sample
with more Yb. We also measured the orientations of those Yb
strands that have a clear direction. There is no clear deviation
from isotropy on the whole.

III. REVIEW OF THE ISOTROPIC MODEL

Our earlier work2 considers the contribution to the energy
of an isotropic droplet, modeled as a short circular cylinder.
The energy of a droplet of radius R and height h �Fig. 4� can
be expressed

U = ���R2 + 2�Rh� + e�R2h + �R4, �1�

where � is the surface tension and e ��0� is bulk cohesive
energy density. The last term results from the dipole-dipole
interactions and the scaling with R4 is the essential feature
that prevents the growth of large droplets. Note that because
of the long-range tail of the electrostatic interaction, the last

term can be regarded as a volume-squared contribution to the
droplet energy. Evaluation of the coefficient � in this expres-
sion requires that one regularize the short-range divergence
of the 1 /r3 dipole-dipole potential. Physically this is regular-
ized by the finite spatial extent of the microscopic dipole
which we label d. For graphene doped near its charge neu-
trality point the screening is weak and the distance d may be
identified with the thickness of the graphene film.10 This
leads to the central result that the droplet radius is propor-
tional to d1/3, which is the scaling rule identified in the ex-
periments studying Au particles on graphene.2

The electrostatic contribution in Eq. �1� is obtained by
isolating the small momentum �q→0� limit of the dipole-
dipole interaction.2 By contrast, the model for the shape in-
stability developed below requires that we extend this into
the q�0 regime and in fact we show below that the interac-
tions that drive the shape instability are obtained by integrat-
ing the interaction over all momenta.

IV. MENSURATION FORMULAS

We are interested in perturbations of a two-dimensional
droplet around a reference isotropic �circular� shape. The
equilibrium shape is determined by a competition between
its volume, surface, and edge energies. Here we parameterize
each of these quantities in terms of the deformation ampli-
tudes of a circular droplet.

Referring to Fig. 4, we write the droplet radius as a func-
tion of the polar angle

r��� = r0 + �
m�0

rmeim�.

Since r��� is real r−m=rm
� . We are considering instabilities

around the circular shape and so we consider the situation
rm	r0.

The differential length along the tangent line of this curve
is

d�2 = dr2 + �rd��2,

which gives a formula for the length of the edge of the drop-
let

L = 2�r0 +
�

r0
�
m

m2�rm�2.

Note that because of the � derivative, the higher m terms are
more effective at increasing the arclength and thus tend to be
suppressed by a positive surface tension.

The cross-sectional area is given by a line integral over
the perimeter

A =
1

2
� êz · �r� 
 dr�� .

Since r����=r���êr one has

dr� =
dr

d�
êr + r���ê�,

which gives

FIG. 3. �Color online� Width distribution of the Yb fibrils dis-
played in the top and bottom panels of Fig. 2 for the average cov-
erages shown.

h r(φ)

φ

m=2 m=3 m=4

1

d

FIG. 4. Diagram illustrating the geometry of the deformed
droplet with radius r���, height h, and dipole layer height d. The
lower panel illustrates the three modes of deformation with m=2, 3,
and 4.

NANOPARTICLE SHAPE SELECTION BY REPULSIVE… PHYSICAL REVIEW B 82, 115430 �2010�

115430-3



A =
1

2
� r���2d�

and integrating over angles gives

A = �r0
2 + � �

m�0
�rm�2.

For a droplet of height h the enclosed volume is simply
V=Ah. Any shape change in a droplet that preserves
the particle number thus keeps the norm A constant assum-
ing fixed h. In particular, if we consider an area-preserving
deformation characterized by the amplitudes rm then the
isotropic term has to adjust in the manner r0�=r0�rm�
=�r0

2�0�−�m�rm�2	r0− �1 /2r0��m�rm�2.

V. DROPLET ENERGY

A. Line energy

The effective droplet line tension arises from the surface
energy of the curved sidewalls of the droplet. Thus the ten-
sion T=�h and the line energy is

Uline = 2��h
r0� +
1

2r0�
�
m

m2�rm�2� , �2�

where we are truncating the expansion at quadratic order in
the rm. The constant-area constraint can be enforced by re-
writing Eq. �2�

Uline = 2��h�r0 +
1

2r0
�
m

�m2 − 1��rm�2 . �3�

Note that to quadratic order in the deformations, the m=1
term does not change the line energy since it describes a
rigid translation of the reference circular droplet.

B. Interaction energy

Two-point interactions within a condensed droplet can
modify the effective line tension at its boundary. In this sec-
tion we develop a formalism for calculating the mode-
dependent renormalized line tension working in a constant-
area ensemble. One can also derive these results by working
in the grand canonical ensemble, allowing for fluctuation in
the total droplet area.

We describe the interactions within the droplet by a two-
dimensional potential which depends on the lateral separa-
tion of two volume elements V�r�1−r�2�. In this problem we
are particularly interested in the interactions between parallel
electric dipoles mutually oriented along the interface normal
with dipole density ��. This dipole layer produces a potential
step that equilibrates the work-function mismatch between
the metal and graphene � with �=� /4�e. The electro-
static energy of an island can be expressed as a double inte-
gral over the droplet area

Ud =
�2

32�2e2� � d2rd2r�f�r��f�r���g��r� − r���� ,

where the dimensionless distribution function f�r��=1 inside
the droplet and zero outside. It is useful to write this inter-
action energy as a momentum integral

Ud =
�2

32�2e2� d2q

2�
v�q���S�q���2, �4�

where

v�q�� =� d2r

2�
e−iq� ·r�g�r�

and

S�q�� =� d2re−iq� ·r�f�r�� . �5�

At distances large compared to the size of the dipole d, the
interaction kernel takes the form

lim
r�d

g�r� →
1

r3 ,

which must be regularized in the near field on the scale of the
dipole. A convenient form for the regularized kernel is

g�r� =
1

�r2 + d2�3/2 ,

which gives

v�q� =
1

d
exp�− qd� =

1

d
ṽ��� ,

where �=qd defines the dimensionless momentum. Note that
the interaction strength scales inversely with the width of the
dipole layer d.

The function S�q�� can be parameterized in terms of the
coefficients rm. In Appendix A we show that this can be
broken into an isotropic part

S0�q� =
2�r0

q
J1�qr0�

and a part that depends on rm with m�0

Sm = 2�imeim�qJm�qr0�r0rm.

In a similar manner, the interaction energy in Eq. �4� can be
partitioned into additive contributions from its isotropic part

U0 = 
�2

8e2d
�� d�ṽ���

J1
2��r0/d�

�
r0

2 � g0r0
2 �6�

and its shape-dependent terms given by a sum over m

Ushape = 
�2

8e2d
�
 r0

d
�2

�
m�0

�� �d�ṽ���Jm
2 ��r0/d��rm�2

� �
m�0

gm�r0��rm�2. �7�

Note that the coefficient of the �rm�2 term is always posi-
tive and thus Ushape is positive definite: each mode of defor-
mation makes a positive contribution to the total electrostatic
energy. A shape instability arises from a competition between
this deformation-induced energy and a compensating change
to the isotropic interaction energy which necessarily occurs if
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the droplet area �equivalently the number of condensed par-
ticles� is held fixed.

C. Area-preserving deformations

The deformation-induced interaction energy and the drop-
let area both increase ��rm�2 for small deformations. Thus
Eq. �7� contains, in addition to the line energy, a part that
contributes to the effective area-dependent energy of a drop-
let. Here we remove this latter piece which simply renormal-
izes the surface tension �it depends only on the droplet area�
and isolate the residual term that contains the pure shape-
dependent energy. To do this we write

U = U � �intA = Ũ + �intA ,

where A=��r0
2+�m�rm�2�. An appropriate choice of �int re-

moves from the difference energy Ũ its area-dependent part

and thus isolates the pure shape-dependent energy. Ũ can be
expressed in terms of �int and the coefficients �gm� of the
quadratic terms in the interaction energy defined previously

Ũ = �g0 − ��int�r0
2 + �

m

�gm − ��int��rm�2.

Setting �Ũ /�A=0 eliminates the differential area depen-

dence from Ũ, solving for �int then gives the contribution of
the interaction term to the area-dependent energy

�Ũ

�A
=

1

2�r0

�Ũ

�r0
+ �

m

1

2�rm

�Ũ

�rm
− �int = 0.

The interaction contribution to the surface tension is there-
fore

�int =
1

2�
 1

r0

�

�r0
+ �

m

1

rm

�

�rm
��

all n
gn�rn�2. �8�

The residual energy Ũ=�m�gm−��int��rm�2 contains the
shape-dependent energy under the constraint of constant total
droplet area.

In the evaluation of �int care must be taken to retain all

terms that contribute to the energy Ũ at order �rm�2, noting
that the expansion coefficients �gm� are themselves function
of r0. In Appendix B we give the results of this calculation
which show that the m-dependent terms in �intA can be or-
ganized in ascending powers of the aspect ratio r0 /d. The
momentum integrated-coupling strength is negative for m
�0 so that interactions act to destabilize the isotropic shape.
In the physically relevant regime in this problem where the
droplet radius r0 is much larger than the width of the dipole
layer d, to leading order in the small quantity d /r0 we find
that this interaction contribution simplifies to

Ũshape = − 
 �2

16e2r0
� �

m�0

 r0

d
�3

�rm�2. �9�

D. Renormalized line tension

Combining our results for the bare line energy Eq. �2� and
interaction contribution Eq. �9�, for a droplet constrained to
have constant area we have

Uline = �
m�0

�m2�h
�rm�2

r0


 �1 −
1

m2�1 − �� d��ṽ���Fm��,z��
= �

m�0
�m2�h

�rm�2

r0
�m,

where z=r0 /d and we define the dimensionless coupling con-
stant

� =
�2

8�e2�h

and the weight function for the mth mode

Fm��,z� � − z3�1 + J0��z�J2��z�
2


− z4� �Jm��z�„Jm−1��z� − Jm+1��z�…

2
 .

Because of the rapid oscillation of the Jm’s for large r0 /d the
integrated-coupling strength is well approximated by retain-
ing only the constant term in its z3 coefficient; in this ap-
proximation the momentum-integrated interaction is inde-
pendent of m and we have

�m 	 �1 −
1

m2�1 +
�

2

 r0

d
�3� .

Vanishing �m signifies the onset of a shape instability in the
mth deformation mode. Thus we obtain a simple scaling rule
that gives the critical radius at which the mth mode of a
circular droplet becomes unstable

rc�m�
d

	 �2�m2 − 1�
�

1/3

. �10�

VI. COMPARISON WITH EXPERIMENT

For Yb on graphene we have �=2.2 eV,11 �
	320 erg /cm2,12 and h	10−7 cm which gives �	 .067.
Figure 5 plots the renormalization coefficients �m for this
coupling strength as a function of r0 /d for m=2, 3, and 4.
The plot shows that an Yb island grows from an isotropic
seed to a radius r0 /d�4.5, where the quadrupolar m=2
mode becomes unstable. The approximate expression in Eq.
�10� gives rc�m=2� /d	4.47 and is indeed very accurate in
this regime. Above this critical point one expects an expo-
nential growth of the droplet along a single axis, which one
can associate with the filamentary structures observed ex-
perimentally. The width of such a filament is twice this criti-
cal radius; for d	0.5 nm we find that filament width is
�5 nm in very good correspondence with the average width
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4.01� .08 nm computed from the distribution shown in Fig.
3 at 0.12 nm average coverage. As the coverage increases the
filaments fold and coarsen due mode competition between
the fibrils. The average width in the higher coverage state is
thus slightly larger �4.95�0.11 nm�. One can contrast this
with the situation for Au adsorption on graphene2 �where
�	0.5 eV, �	1130 erg /cm2,13 and �� 
10−3� which
gives rc�m=2� /d	20. This requires growth of a circular
droplet to a diameter exceeding 20 nm which is larger than
both the intrinsic size limit imposed by the isotropic term in
the dipolar energy and the largest droplet sizes observed ex-
perimentally for Au on few-layer graphenes.2

In general, the stability limits for the isotropic and dis-
torted drops show different scaling with the width of the
dipole layer d. A size-limited circular droplet has a radius
that increases �d1/3 while it is stable against shape fluctua-
tions below a critical radius �d. Thus in the limit of weak
coupling �large d� a size-limited circular droplet is stable
while for strong electrostatic coupling with d� interlayer
spacing the droplet can undergo an interaction-driven shape
instability. Au and Yb provide examples, respectively, of this
weak-coupling and strong-coupling behavior.

VII. DISCUSSION

Three features of Fig. 5 are noteworthy. First, the insta-
bility is driven by the terms in our expansion for the shape
energy that are quadratic in the deformation amplitudes and
have the strongest �highest power� dependence on r0 /d. Thus
the instability requires only growth of a droplet past a critical
radius for the shape change to occur. At larger r0 /d there is
no mechanism that can restore a stable isotropic solution.
Thus sufficiently large droplets are absolutely unstable to this
type of shape instability. Second, the renormalization coeffi-
cient shows that the crossover from the weakly renormalized
regime �small r0� to the unstable regime �large r0� occurs
over a narrow size range. This also reflects the very strong z3

dependence of the dominant term in the integrated coupling
strength. Thus one expects the fibrils to show a sharply
peaked width distribution, as is demonstrated experimentally

in Fig. 3. Third, it is striking that the integrated-coupling
strength is nearly the same for all the modes of deformation
of the circular droplet. Ultimately the shape instability is
suppressed for large m modes because of the m2 scaling of
the bare line tension rather than through the residual m de-
pendence in the interaction contribution. This leads to our
simple scaling rule for the m-dependent critical radii.

Finally, we note that previous continuum formulations of
this problem inevitably require a finite droplet height to regu-
larize the short-distance singularity in the dipole-dipole po-
tential when they are treated as point dipoles.7,8 In our treat-
ment this is regularized more naturally by representing the
interaction potential using a nonsingular near field form con-
trolled by the finite size of the relevant microscopic dipoles.
More generally our expression for the interaction-
renormalized line energy now can be applied to any repul-
sive two-point potential in the droplet interior. Indeed, the
scaling form for Fm describes the renormalization of the line
tension by any nonsingular bulk interaction.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
under Grant No. DE-FG02-ER45118 �E.J.M.�, by the Na-
tional Science Foundation under PREM Grant No. 0353730
�N.A.Z.� and by the NSF under Grant No. DMR08-05136

2 4 6 8 10

-35

-30

-25

-20

-15

-10

-5

2 4 6 8 10

-20

-10

10

f3

f4f1 f2

ξ

ftotal

(ξ/2) e- ξ

ξ

F2(ξ)

fp(ξ)

FIG. 6. �Color online� Momentum dependence of the integrand
for evaluation of shape-dependent interaction energy for m=2 plot-
ted as a function of the dimensionless momentum �=qd, broken
into separate contributions fp sorted by their dependence on �r0 /d�p

�top panel� and the total �bottom panel�. The thin �red� line in the
bottom panel plots an expression discussed in the text that provides
a good approximation to the integrated coupling strength. The data
are presented for r0 /d=5.

2 4 6 8 10

-2

-1.5

-1

-0.5

0.5

1

r0/d

λm

m=2
m=3

m=4

FIG. 5. Line tension renormalization coefficients �m plotted as a
function of r0 /d for m=2, 3, and 4, and for �	 .067, appropriate to
Yb/graphene.

SOMERS et al. PHYSICAL REVIEW B 82, 115430 �2010�

115430-6



�L.S. and A.T.J.�. We thank Z. Luo and P. Nelson for helpful
discussions.

APPENDIX A: FORM FACTORS FOR DEFORMED
CIRCULAR DROPLETS

In this appendix we parameterize the form factor of Eq.
�5� in terms of the shape coefficients rm. Consider the Fourier
integral over the area of the droplet

S�q�� =� d�rdre−iq� ·r�f�r��

= �
0

r0

e−iq� ·r�rdrd� + �
r0

r0+�mrmeim�

e−iq� ·r�rdrd� .

Here the isotropic part gives

S0�q� = 2��
0

r0

J0�qr�rdr =
2�r0

q
J1�qr0�

while the anisotropic piece can be decomposed by noting
that rm	r0 and thus

Sm = 2�imeim�qJm�qr0�r0rm

and therefore we have that

S�q�� =
2�r0

q
J1�qr0� + 2��

m

imeim�qJm�qr0�r0rm.

These expressions are inserted into the momentum integral
for the interaction energy and the angular integration then
gives the results in Eqs. �6� and �7�.

APPENDIX B: INTERACTION CONTRIBUTION
TO THE SURFACE TENSION

The interaction contribution to the surface tension �int is
obtained by carrying out the derivatives in Eq. �8� on the

quadratic expression for the interaction energy. In this calcu-

lation we retain all terms that contribute to the energy Ũ at
order �rm�2, noting that the expansion coefficients �gm� are
themselves function of r0. The m-dependent terms in �intA
can then be organized in ascending powers of the aspect ratio
r0 /d

�intA = 
 �2

8e2r0
� �

m�0
�rm�2� d��ṽ���



 r0

d
� J1

2��r0/d�
�2

+ 
 r0

d
�2

J1��r0/d�� J0��r0/d� − J2��r0/d�
2�


+ 
 r0

d
�3�Jm

2 ��r0/d� +
1 − J0

2��r0/d�
2


+ 
 r0

d
�4

�Jm��r0/d�� Jm−1��r0/d� − Jm+1��r0/d�
2

 .

When r0 /d is large, this expression is controlled by its terms
that increase most rapidly as a function of r0 /d. We observe
that the first term at O�r0 /d�3 exactly cancels the “bare”
contribution of the mth mode to the interaction energy. The
remaining term at O�r0 /d�3 ultimately dominates the mo-
mentum integral since the last term is a rapidly oscillating
function of � as illustrated in Fig. 6. The momentum-
integrated interaction is seen to be negative indicating that
for area-preserving deformations repulsive interparticle inter-
actions destabilize the isotropic shape at sufficiently large
radius. To leading order in the small quantity d /r0 this is well
approximated by the expression in Eq. �9�. The lower panel
of Fig. 6 compares the full momentum dependent integrand
for the interaction strength to an approximate form that re-
tains only the constant coefficient in the z3 term.
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